

PURDUE UNIVERSITY

Quantifying the Impacts of Real-time Travel Information on Route Choice Behavior using Psychophysiological Analysis

Shubham Agrawal, Irina Benedyk, Dongyoon Song and Srinivas Peeta

INFORMS Annual Meeting 2017

October 23, 2017

Introduction

- Route choice behavior
 - Individual response
 - Collective response

- Individual response
 - Rational choice utility theory
 - Expected utility theory
 - Prospect theory
 - Regret theory, etc.

PURDUE UNIVERSITY Mextrans

- Early research
 - Static parameters road/route characteristics
 - Freeway or arterial
 - Distance
 - Dynamic parameters traffic conditions
 - Experiential travel times

Traffic Conditions

PURDUE

Nextrans

- Individualized parameters population heterogeneity
 - Route familiarity
 - Experience
 - Individual attributes

ndividual Factors

- Sociodemographic characteristics
- Attitudes and beliefs
- Trip characteristics
 - Trip purpose

Route Choice Behavior – Information

- Advanced Travel Information System (ATIS)
 - Provides real-time travel information related to traveler's situation
 - Leverages new technologies to deliver information
- Information characteristics
 - Content
 - Descriptive
 - Prescriptive
 - Source (trust)

Traffic Conditions

- Public infrastructure (e.g. variable message sign)
- Personal device (e.g. smartphone using Google maps)

PURDUE

Route Choice Behavior – Driver Cognition

- Determining impacts on driver cognition/psychology
 - Individual factors

11

Route Choice Behavior – Driver Cognition

- Determining impacts on driver cognition/psychology
 - Individual factors
- Driving experience Road Characteristics
 - Traffic conditions
 - Congestion level
 - Information characteristics
 - Amount and Content
 - Source (modality)

Route Choice Behavior – Cognitive Effects

- Impacts of driver cognitive state on route choice behavior under real-time travel information
 - Increasing amount of information from multiple sources
 - Consumes driver's cognitive resources
 - Affects driving performance and route choice decisions
 - Sparse research
 - Hybrid route choice models using latent variables approach
 - Challenges
 - Driver cognitive/psychological state is not observable
 - Self-reported survey based metrics are biased

Route Choice Behavior – Psychophysiological Analysis

- Measure driver cognitive state under real-time information provision in a tangible manner
 - Collect physiological data using biosensors
 - Brain electrical activity, heart rate, eye movements, facial expressions, etc.
 - Estimate cognitive state using psychophysiological analysis
 - Rou Mental workload, task engagement, etc.

Physiological data

Anger

Fea

Emotion Detected by Second

Driving Simulator Experiments (Ongoing)

- Real-world road network (Northern Indianapolis)
- Dynamic and responsive ambient traffic
- Multiple information sources

Measuring Driver Cognitive State

- EEG (electroencephalogram) records electric signals from brain
 - Compute workload and engagement level
 - Workload: related to working memory and problem solving
 - Engagement: related to sensory engagement
- ECG (electrocardiogram) records electrical activity of heart
 - Compute stress using average heart rate and its variability
- Eye tracker
 - Tracks eye gaze, blink rate, pupil size
 - Provides statistics about eye movements in area-of-interest
 - Area-of-interests can be VMS, traffic signals and signs, smartphone, GPS, dashboard, etc.

Integrated Analysis of EEG and Eye Tracker Data

- EEG data can be used to estimate driver cognitive state (i.e. workload or sensory engagement), but not its cause
 - Driver can be thinking about an important meeting
- Eye tracker data (along with driving and traffic data) can be used to infer the cause of driver's cognitive state
 - Model eye gazing pattern and cognitive state to determine the potential cause
- Segregate driver cognitive state caused by driving and non-driving activities
 - Improved understanding of role of real-time information on driver cognition

DRIVING SIMULATOR EXPERIMENT

To Understand Driver Response towards Real-time Travel Information

Principal investigator: Dr. Srinivas Peeta